Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Expert Rev Vaccines ; 22(1): 738-748, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37622470

RESUMO

INTRODUCTION: Neisseria meningitidis serogroup B (NmB) antigens are inherently diverse with variable expression among strains. Prediction of meningococcal B (MenB) vaccine effectiveness therefore requires an assay suitable for use against large panels of epidemiologically representative disease-causing NmB strains. Traditional serum bactericidal antibody assay using exogenous human complement (hSBA) is limited to the quantification of MenB vaccine immunogenicity on a small number of indicator strains. AREAS COVERED: Additional and complementary methods for assessing strain coverage developed previously include the Meningococcal Antigen Typing System (MATS), Meningococcal Antigen Surface Expression (MEASURE) assay, and genotyping approaches, but these do not estimate vaccine effectiveness. We provide a narrative review of these methods, highlighting a more recent approach involving the hSBA assay in conjunction with expanded NmB strain panels: hSBA assay using endogenous complement in each vaccinated person's serum (enc-hSBA) against a 110-strain NmB panel and the traditional hSBA assay against 14 (4 + 10) NmB strains. EXPERT OPINION: The enc-hSBA is a highly standardized, robust method that can be used in clinical trials to measure the immunological effectiveness of MenB vaccines under conditions that mimic real-world settings as closely as possible, through the use of endogenous complement and a diverse, epidemiologically representative panel of NmB strains.


Meningococcal disease refers to illnesses caused by the bacterium Neisseria meningitidis (meningococcus), including infections of the brain lining and spinal cord (meningitis) and bloodstream (septicemia). It is rare but often severe and can be deadly. Invasive meningococcal disease can be prevented through vaccination. Nearly all cases are caused by six serogroups (types) of meningococci, including meningococcal serogroup B. Vaccines are available against meningococcal serogroup B but, because of the uncommonness of the disease, standard clinical trials could not be performed to prove these vaccines are effective. Instead, an indirect measure, called the 'hSBA assay' (serum bactericidal antibody assay using human complement), is used to measure the ability of vaccines to provide protection against specific N. meningitidis strains that have antigens (substances that cause the immune system to react) sharing characteristics with components of the vaccines. However, meningococcal serogroup B strains are diverse in the genetic composition and expression of vaccine antigens. Hence, a large number of N. meningitidis serogroup B strains would have to be tested to make sure that the vaccine is effective against these strains. This is not feasible using the traditional hSBA assay, which requires a human complement (a protein system, which is part of the immune system) that has not come from the vaccinated person and is difficult and time-consuming to source. Recently, an alternative hSBA assay was developed that uses the complement present in each vaccinated person's blood (endogenous complement) and which overcomes these challenges. By allowing testing against a broad panel of N. meningitidis serogroup B strains, this new assay may enable a more accurate estimation of the effectiveness of vaccines against serogroup B meningococci.


Assuntos
Infecções Meningocócicas , Vacinas Meningocócicas , Neisseria meningitidis Sorogrupo B , Neisseria meningitidis , Humanos , Ensaios de Anticorpos Bactericidas Séricos/métodos , Sorogrupo , Eficácia de Vacinas , Anticorpos Antibacterianos , Antígenos de Bactérias/genética , Neisseria meningitidis Sorogrupo B/genética , Proteínas do Sistema Complemento , Infecções Meningocócicas/prevenção & controle
2.
Vaccine ; 40(42): 6042-6047, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36089429

RESUMO

Invasive meningococcal disease (IMD) affects approximately 1.2 million people worldwide annually. Prevention of IMD is mostly provided through vaccination; however, no licensed vaccine is currently available to protect against meningococcal serogroup X associated infection. Limited data are available on the natural immunity to Neisseria meningitidis serogroup X within the African sub-Saharan meningitis belt. The objective of the study was to provide an overview of natural immunity to serogroup X within a community in the African meningitis belt prior to the introduction of a pentavalent conjugate vaccine (NmCV-5). Prior to its introduction, a validated assay to assess vaccine efficacy was also required. This study therefore incorporated two objectives: a seroprevalence study to assess natural immunity in serum samples (n = 377) collected from Niger, West Africa in 2012, and the validation of a serogroup X serum bactericidal antibody (SBA) assay. Seroprevalence data obtained found that natural immunity to N. meningitidis serogroup X were present in 52.3% of study participants. The highest putative protective titres (≥8) to serogroup X were seen in age group 5-14 years-old (73.9%) and lowest in ages < 1 year old (0%). The SBA assay was successfully validated for selectivity/specificity, precision/reproducibility, linearity, and stability. This study demonstrated the suitability of the serogroup X SBA assay in clinical trials for future meningococcal conjugate vaccines containing serogroup X polysaccharides.


Assuntos
Infecções Meningocócicas , Vacinas Meningocócicas , Neisseria meningitidis , Adolescente , Anticorpos Antibacterianos , Criança , Pré-Escolar , Humanos , Lactente , Infecções Meningocócicas/prevenção & controle , Níger/epidemiologia , Reprodutibilidade dos Testes , Estudos Soroepidemiológicos , Sorogrupo , Ensaios de Anticorpos Bactericidas Séricos , Vacinas Combinadas , Vacinas Conjugadas
3.
Am J Trop Med Hyg ; 105(3): 622-626, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34237020

RESUMO

Cholera remains a significant public health burden worldwide, and better methods for monitoring cholera incidence would enhance the effectiveness of public health interventions. The serum bactericidal assay (SBA) has been used extensively for Vibrio cholerae vaccine assessments and serosurveillance. Current SBA approaches for V. cholerae rely on colony enumeration or optical density (OD600nm) readings to measure viable bacteria following complement-mediated lysis. These methods provide titer values that are constrained to discrete dilution values and rely on bacterial outgrowth, which is time consuming and prone to variation. Detection of bacterial proteins following complement-mediated lysis presents a faster and potentially less variable alternative approach independent of bacterial outgrowth. Here, we present an SBA that measures luciferase luminescence driven by lysis-released adenylate kinase. This approach is faster and less variable than growth-dependent SBAs and directly measures continuous titer values. This novel SBA method can potentially be applied to other bacteria of interest.


Assuntos
Anticorpos Antibacterianos/imunologia , Cólera/epidemiologia , Ensaios de Anticorpos Bactericidas Séricos/métodos , Vibrio cholerae/imunologia , Cólera/imunologia , Cólera/prevenção & controle , Vacinas contra Cólera/uso terapêutico , Análise Custo-Benefício , Monitoramento Epidemiológico , Humanos , Imunogenicidade da Vacina , Medições Luminescentes , Reprodutibilidade dos Testes , Estudos Soroepidemiológicos , Fatores de Tempo
4.
Front Immunol ; 12: 671325, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017343

RESUMO

Shigella is the second most deadly diarrheal disease among children under five years of age, after rotavirus, with high morbidity and mortality in developing countries. Currently, no vaccine is widely available, and the increasing levels of multidrug resistance make Shigella a high priority for vaccine development. The single-component candidate vaccine against Shigella sonnei (1790GAHB), developed using the GMMA technology, contains the O antigen (OAg) portion of lipopolysaccharide (LPS) as active moiety. The vaccine was well tolerated and immunogenic in early-phase clinical trials. In a phase 1 placebo-controlled dose escalation trial in France (NCT02017899), three doses of five different vaccine formulations (0.06/1, 0.3/5, 1.5/25, 3/50, 6/100 µg of OAg/protein) were administered to healthy adults. In the phase 1 extension trial (NCT03089879), conducted 2-3 years following the parent study, primed individuals who had undetectable antibody levels before the primary series received a 1790GAHB booster dose (1.5/25 µg OAg/protein). Controls were unprimed participants immunized with one 1790GAHB dose. The current analysis assessed the functionality of sera collected from both studies using a high-throughput luminescence-based serum bactericidal activity (SBA) assay optimized for testing human sera. Antibodies with complement-mediated bactericidal activity were detected in vaccinees but not in placebo recipients. SBA titers increased with OAg dose, with a persistent response up to six months after the primary vaccination with at least 1.5/25 µg of OAg/protein. The booster dose induced a strong increase of SBA titers in most primed participants. Correlation between SBA titers and anti-S. sonnei LPS serum immunoglobulin G levels was observed. Results suggest that GMMA is a promising OAg delivery system for the generation of functional antibody responses and persistent immunological memory.


Assuntos
Vacinas Bacterianas/imunologia , Disenteria Bacilar/imunologia , Antígenos O/imunologia , Shigella sonnei/fisiologia , Anticorpos Antibacterianos/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , Proteínas do Sistema Complemento/metabolismo , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Memória Imunológica , Masculino , Efeito Placebo , Ensaios de Anticorpos Bactericidas Séricos , Potência de Vacina
5.
Vaccine ; 39(8): 1297-1302, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33509693

RESUMO

Deficiencies of C2 and other components of the classical pathway of complement are associated with increased risk of infections with encapsulated bacteria, such as Haemophilus (H.) influenzae. Defense against H. influenzae is dependent on specific antibodies and complement, which mediate serum bactericidal activity (SBA) and opsonization. Due to lack of normal classical and lectin complement pathway function in C2 deficiency (C2D), SBA would have to depend either on the alternative pathway or on C2 bypass mechanisms. Here we studied SBA against H. influenzae type b (Hib) before and after vaccination in a group of C2-deficient persons, as the bactericidal capacity of antibodies in autologous complement in relation to vaccination has not been investigated at group level in C2D. Sera from 22 persons with C2D and 26 healthy controls were available. Out of these, 18 persons with C2D and all controls had been vaccinated with Act-HIB®. SBA against Hib bacteria was analyzed with autologous serum as the only complement source. Antibodies to Hib capsular polysaccharide had been analyzed previously. Concentrations of mannose-binding lectin (MBL) and other complement components were measured in serum. SBA of both C2-deficient persons and controls was significantly more efficient after vaccination (p = 0.002 and p < 0.0001, respectively). After vaccination, all but two C2-deficient sera and one control serum showed sufficient SBA (<50% surviving bacteria). Before vaccination, SBA of C2-deficient sera was negatively correlated to serum concentrations of MBL (lower proportion of surviving bacteria with higher MBL concentration; r = -0.55, p = 0.008). After vaccination, SBA of C2-deficient sera was negatively correlated to serum concentrations of IgG Hib antibodies (r = -0.56, p = 0.01). In conclusion, SBA against Hib in autologous serum is increased after vaccination in persons with C2D. In unvaccinated C2-deficient persons SBA was correlated to MBL concentration, providing further support for an MBL-dependent C2 bypass mechanism operating in C2D.


Assuntos
Complemento C2/deficiência , Infecções por Haemophilus , Vacinas Anti-Haemophilus , Haemophilus influenzae tipo b , Lectina de Ligação a Manose , Anticorpos Antibacterianos , Antígenos de Bactérias , Infecções por Haemophilus/prevenção & controle , Haemophilus influenzae , Humanos , Imunoglobulina G , Ensaios de Anticorpos Bactericidas Séricos , Vacinação
6.
Proc Natl Acad Sci U S A ; 117(47): 29795-29802, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33158970

RESUMO

Meningococcal meningitis remains a substantial cause of mortality and morbidity worldwide. Until recently, countries in the African meningitis belt were susceptible to devastating outbreaks, largely attributed to serogroup A Neisseria meningitidis (MenA). Vaccination with glycoconjugates of MenA capsular polysaccharide led to an almost complete elimination of MenA clinical cases. To understand the molecular basis of vaccine-induced protection, we generated a panel of oligosaccharide fragments of different lengths and tested them with polyclonal and monoclonal antibodies by inhibition enzyme-linked immunosorbent assay, surface plasmon resonance, and competitive human serum bactericidal assay, which is a surrogate for protection. The epitope was shown to optimize between three and six repeating units and to be O-acetylated. The molecular interactions between a protective monoclonal antibody and a MenA capsular polysaccharide fragment were further elucidated at the atomic level by saturation transfer difference NMR spectroscopy and X-ray crystallography. The epitope consists of a trisaccharide anchored to the antibody via the O- and N-acetyl moieties through either H-bonding or CH-π interactions. In silico docking showed that 3-O-acetylation of the upstream residue is essential for antibody binding, while O-acetate could be equally accommodated at three and four positions of the other two residues. These results shed light on the mechanism of action of current MenA vaccines and provide a foundation for the rational design of improved therapies.


Assuntos
Epitopos/imunologia , Meningite Meningocócica/prevenção & controle , Vacinas Meningocócicas/imunologia , Neisseria meningitidis/imunologia , Polissacarídeos Bacterianos/imunologia , Acetilação , Adolescente , Anticorpos Antibacterianos/química , Anticorpos Antibacterianos/imunologia , Criança , Ensaios Clínicos Fase II como Assunto , Cristalografia por Raios X , Feminino , Humanos , Imunogenicidade da Vacina , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Masculino , Meningite Meningocócica/imunologia , Meningite Meningocócica/microbiologia , Vacinas Meningocócicas/uso terapêutico , Simulação de Acoplamento Molecular , Estudos Multicêntricos como Assunto , Polissacarídeos Bacterianos/química , Ensaios Clínicos Controlados Aleatórios como Assunto , Sorogrupo , Ensaios de Anticorpos Bactericidas Séricos , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/uso terapêutico
7.
Nat Commun ; 11(1): 4994, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020485

RESUMO

Serogroup B meningococcus (MenB) is a leading cause of meningitis and sepsis across the world and vaccination is the most effective way to protect against this disease. 4CMenB is a multi-component vaccine against MenB, which is now licensed for use in subjects >2 months of age in several countries. In this study, we describe the development and use of an ad hoc protein microarray to study the immune response induced by the three major 4CMenB antigenic components (fHbp, NHBA and NadA) in individual sera from vaccinated infants, adolescents and adults. The resulting 4CMenB protein antigen fingerprinting allowed the identification of specific human antibody repertoire correlating with the bactericidal response elicited in each subject. This work represents an example of epitope mapping of the immune response induced by a multicomponent vaccine in different age groups with the identification of protective signatures. It shows the high flexibility of this microarray based methodology in terms of high-throughput information and minimal volume of biological samples needed.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Infecções Meningocócicas/imunologia , Vacinas Meningocócicas/imunologia , Neisseria meningitidis Sorogrupo B/imunologia , Adolescente , Adulto , Anticorpos Antibacterianos/sangue , Criança , Pré-Escolar , Mapeamento de Epitopos , Humanos , Lactente , Infecções Meningocócicas/prevenção & controle , Biblioteca de Peptídeos , Análise Serial de Proteínas , Ensaios de Anticorpos Bactericidas Séricos , Adulto Jovem
8.
FASEB J ; 34(8): 10329-10341, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32725956

RESUMO

The classical complement pathway is triggered when antigen-bound immunoglobulins bind to C1q through their Fc region. While C1q binds to a single Fc with low affinity, a higher avidity stable binding of two or more of C1q globular heads initiates the downstream reactions of the complement cascade ultimately resulting in bacteriolysis. Synergistic bactericidal activity has been demonstrated when monoclonal antibodies recognize nonoverlapping epitopes of the same antigen. The aim of the present work was to investigate the synergistic effect between antibodies directed toward different antigens. To this purpose, we investigated the bactericidal activity induced by combinations of monoclonal antibodies (mAbs) raised against factor H-binding protein (fHbp) and Neisserial Heparin-Binding Antigen (NHBA), two major antigens included in Bexsero, the vaccine against Meningococcus B, for prevention from this devastating disease in infants and adolescents. Collectively, our results show that mAbs recognizing different antigens can synergistically activate complement even when each single Mab is not bactericidal, reinforcing the evidence that cooperative immunity induced by antigen combinations can represent a remarkable added value of multicomponent vaccines. Our study also shows that the synergistic effect of antibodies is modulated by the nature of the respective epitopes, as well as by the antigen density on the bacterial cell surface.


Assuntos
Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Proteínas do Sistema Complemento/imunologia , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Transporte/imunologia , Fator H do Complemento/imunologia , Epitopos/imunologia , Neisseria meningitidis/imunologia , Ensaios de Anticorpos Bactericidas Séricos/métodos
9.
Vaccine ; 38(22): 3902-3908, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32284274

RESUMO

BACKGROUND: To provide continuing protection, available meningococcal vaccines must provide long-term persistence of circulating functional antibodies against prevalent serogroups causing invasive meningococcal disease (IMD). This study assessed antibody persistence and safety of the quadrivalent meningococcal vaccine conjugated to tetanus toxoid (MenACWY-TT) and the meningococcal serogroup C vaccine conjugated to Corynebacterium diphtheriae CRM197 protein (MenC-CRM) for up to 6 years after booster dosing in children. METHODS: In the primary vaccination study, children were vaccinated at age 12 to 23 months. In the first extension study, children who completed the primary study received a booster dose 4 years later with the same primary vaccine. The current study assessed antibody persistence at 2 to 6 years postbooster against each of the 4 meningococcal serogroups using serum bactericidal assays using rabbit (rSBA) or human (hSBA) complement with antibody titer thresholds of ≥1:8 or ≥1:4, respectively, and geometric mean titers (GMTs). Safety evaluations during this period included serious adverse events (SAEs) related to vaccination and any event related to lack of vaccine efficacy. RESULTS: A total of 184 subjects were enrolled (MenACWY-TT = 159; MenC-CRM = 25). For MenACWY-TT, the percentages of subjects with rSBA titers ≥1:8 ranged from 96.7% to 100% across serogroups at 2 years postbooster and 71.6% to 94.0% at 6 years postbooster; rSBA GMTs decreased from Year 2 to 4 and generally remained stable thereafter. The percentages of subjects in the MenACWY-TT group with hSBA titers ≥1:4 were 70.0% to 100% across serogroups at 2 years postbooster and 58.5% to 98.5% at 6 years postbooster. No lack of efficacy, SAEs, or vaccine-related adverse events were reported. CONCLUSIONS: The persistence of rSBA and hSBA antibodies was shown up to 6 years postbooster (10 years postprimary vaccination) with either MenACWY-TT or MenC-CRM, suggesting that this schedule may provide long-term protection against IMD. Clinicaltrials.gov: NCT01900899.


Assuntos
Anticorpos Antibacterianos/sangue , Imunização Secundária , Infecções Meningocócicas , Vacinas Meningocócicas/imunologia , Pré-Escolar , Humanos , Infecções Meningocócicas/prevenção & controle , Ensaios de Anticorpos Bactericidas Séricos , Toxoide Tetânico/imunologia , Fatores de Tempo , Vacinas Conjugadas/imunologia
10.
Sci Rep ; 9(1): 13797, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551511

RESUMO

The capsular group B meningococcal (MenB) four component vaccine (4CMenB) has been licensed for the prevention of invasive disease caused by MenB. The vaccine causes fever in infants, particularly when given in combination (concomitant) with other routinely-administered vaccines (routine), such as the standard diphtheria, tetanus, pertussis (DTP)-containing vaccine. To assess the suitability of a mouse immunisation model to study this phenomenon, we monitored temperature in mice after a second dose of routine vaccines, with or without 4CMenB, and compared the results with those in humans. Using this mouse model, we explored the reactogenicity of 4CMenB components by measuring changes in temperature, cytokines, and gene expression induced by 4CMenB, one of its components, wild-type or attenuated endotoxin outer membrane vesicles (OMVs), or lipopolysaccharide (LPS). A significant rise (p < 0.01) in temperature was observed in mice immunised with 4CMenB, wild-type OMVs, and LPS. RNA-sequencing of mouse whole blood revealed a gene signature shared by the 4CMenB, OMV, and LPS groups consisting of bacterial pattern recognition receptors and neutrophil activation marker genes. Sequencing of neutrophils isolated after concomitant 4CMenB identified cells expressing the OMV-associated genes Plek and Lcp1. Immunisation with 4CMenB or OMVs led to increased IL-6 in serum and significant upregulation (p < 0.0001) of prostaglandin-synthesising enzymes on brain tissue. These data demonstrate the suitability of a mouse model for assessing vaccine reactogenicity and strongly indicate that the fever following vaccination with 4CMenB in human infants is induced by endotoxin contained in the OMV component of the vaccine.


Assuntos
Membrana Externa Bacteriana/imunologia , Endotoxinas/imunologia , Infecções Meningocócicas/imunologia , Vacinas Meningocócicas/imunologia , Transcriptoma/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Feminino , Imunização/métodos , Esquemas de Imunização , Interleucina-6/imunologia , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Ensaios de Anticorpos Bactericidas Séricos/métodos , Vacinação/métodos
11.
Artigo em Inglês | MEDLINE | ID: mdl-31300124

RESUMO

S. Choleraesuis (Choleraesuis) and S. Typhimurium (Typhimurium) cause salmonellosis in pigs and humans. The effects of vaccine strains pSV-less Typhimurium OU5048 and Choleraesuis OU7266 and SPI-2-mutant Choleraesuis SC2284 on the immune responses of pigs against Typhimurium, Choleraesuis, and S. Enteritidis (Enteritidis) with or without the virulence plasmid (pSV) were determined. After oral vaccination of three vaccine groups and challenge with Choleraesuis CN36, the level of Salmonella-specific IgG in sera and the bactericidal effects and superoxide generation of peripheral blood mononuclear cells (PBMCs) and polymorphonuclear leukocytes (PMNs) against the above strains were determined using ELISA and NBT assay, respectively. Among three vaccine strains tested, OU7266 stimulated the highest Salmonella-specific IgG levels. Complement inactivation increased IgG concentration, while E. coli absorption reduced IgG levels. The pSV-containing strains were less resistant to serum killing than the pSV-less strains, and Enteritidis exhibited the lowest resistance to serum killing. Serovars tested, vaccine strains, and timeline periods postvaccination and challenge were important factors affecting superoxide production. The two Choleraesuis vaccine strains stimulated greater levels of superoxide from PMNs and PBMCs than the Typhimurium strains. The PMNs and PBMCs in challenged and vaccinated pigs reduced more superoxide than those in challenged hosts. In vaccinated hosts, pSV-less Salmonella strains triggered lower levels of PMN/PBMC-generated superoxide upon challenge than strains with pSV against Enteritidis and Choleraesuis. Overall, Choleraesuis OU7266 may be better than the other vaccine strains in generating the greatest IgG levels, serum bactericidal activity and superoxide levels. The pSV likely influences the immune responses.


Assuntos
Imunoglobulina G/sangue , Salmonelose Animal/prevenção & controle , Vacinas contra Salmonella/uso terapêutico , Doenças dos Suínos/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Proteínas do Sistema Complemento/imunologia , Escherichia coli/imunologia , Escherichia coli/metabolismo , Feminino , Leucócitos Mononucleares/imunologia , Neutrófilos/imunologia , Espécies Reativas de Oxigênio/imunologia , Salmonella , Salmonelose Animal/imunologia , Vacinas contra Salmonella/imunologia , Salmonella typhimurium , Ensaios de Anticorpos Bactericidas Séricos , Suínos , Vacinação/veterinária , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/uso terapêutico
12.
mBio ; 10(3)2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213564

RESUMO

MenB-4C (Bexsero; GlaxoSmithKline Biologicals) is a licensed meningococcal vaccine for capsular B strains. The vaccine contains detergent-extracted outer membrane vesicles (dOMV) and three recombinant proteins, of which one is factor H binding protein (FHbp). In previous studies, overexpression of FHbp in native OMV (NOMV) with genetically attenuated endotoxin (LpxL1) and/or by the use of mutant FHbp antigens with low factor H (FH) binding increased serum bactericidal antibody (SBA) responses. In this study, we immunized 13 infant macaques with 2 doses of NOMV with overexpressed mutant (R41S) FHbp with low binding to macaque FH (NOMV-FHbp). Control macaques received MenB-4C (n = 13) or aluminum hydroxide adjuvant alone (n = 4). NOMV-FHbp elicited a 2-fold higher IgG anti-FHbp geometric mean titer (GMT) than MenB-4C (P = 0.003), and the anti-FHbp repertoire inhibited binding of FH to FHbp, whereas anti-FHbp antibodies to MenB-4C enhanced FH binding. MenB-4C elicited a 10-fold higher GMT against strain NZ98/254, which was used to prepare the dOMV component, whereas NOMV-FHbp elicited an 8-fold higher GMT against strain H44/76, which was the parent of the mutant NOMV-FHbp vaccine strain. Against four strains with PorA mismatched to both of the vaccines and different FHbp sequence variants, NOMV-FHbp elicited 6- to 14-fold higher SBA GMTs than MenB-4C (P ≤ 0.0002). Two of 13 macaques immunized with MenB-4C but 0 of 17 macaques immunized with NOMV-FHbp or adjuvant developed serum anti-FH autoantibodies (P = 0.18). Thus, the mutant NOMV-FHbp approach has the potential to elicit higher and broader SBA responses than a licensed group B vaccine that contains wild-type FHbp that binds FH. The mutant NOMV-FHbp also might pose less of a risk of eliciting anti-FH autoantibodies.IMPORTANCE There are two licensed meningococcal capsular B vaccines. Both contain recombinant factor H binding protein (FHbp), which can bind to host complement factor H (FH). The limitations of these vaccines include a lack of protection against some meningococcal strains and the potential to elicit autoantibodies to FH. We immunized infant macaques with a native outer membrane vesicle (NOMV) vaccine with genetically attenuated endotoxin and overproduced mutant FHbp with low binding to FH. The NOMV-FHbp vaccine stimulated higher levels of protective serum antibodies than a licensed meningococcal group B vaccine against five of six genetically diverse meningococcal strains tested. Two of 13 macaques immunized with the licensed vaccine, which contains FHbp that binds macaque FH, but 0 of 17 macaques given NOMV-FHbp or the negative control developed serum anti-FH autoantibodies Thus, in a relevant nonhuman primate model, the NOMV-FHbp vaccine elicited greater protective antibodies than the licensed vaccine and may pose less of a risk of anti-FH autoantibody.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/imunologia , Fator H do Complemento/imunologia , Vacinas Meningocócicas/imunologia , Animais , Antígenos de Bactérias/genética , Autoanticorpos/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Macaca mulatta , Meningite Meningocócica/imunologia , Meningite Meningocócica/prevenção & controle , Proteínas Mutantes/imunologia , Neisseria meningitidis/genética , Neisseria meningitidis/imunologia , Neisseria meningitidis Sorogrupo B/genética , Neisseria meningitidis Sorogrupo B/imunologia , Ensaios de Anticorpos Bactericidas Séricos
13.
Methods Mol Biol ; 1997: 267-280, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31119629

RESUMO

The global spread of multidrug-resistant gonorrhea has spurred efforts to develop a safe and effective vaccine against gonorrhea. Complement plays an important role in host defenses against Neisseria infections. Complement-dependent bactericidal activity of antibodies (either natural antibodies or those elicited by immunization) is a well-established correlate of protection against meningococcal infections. Although correlates of protection against gonococcal infection have not been defined, there is evidence to suggest that complement-mediated killing may also predict vaccine efficacy against this disease. This chapter describes methods to prepare human complement sources and perform bactericidal assays against Neisseria gonorrhoeae.


Assuntos
Anticorpos Antibacterianos/imunologia , Proteínas do Sistema Complemento/imunologia , Gonorreia/imunologia , Neisseria gonorrhoeae/imunologia , Ensaios de Anticorpos Bactericidas Séricos/métodos , Proteínas da Membrana Bacteriana Externa/imunologia , Gonorreia/microbiologia , Humanos , Imunidade Humoral
14.
Hum Vaccin Immunother ; 15(10): 2491-2500, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30883271

RESUMO

Invasive meningococcal disease is rare and potentially devastating but often vaccine-preventable. Evaluation of meningococcal vaccine effectiveness is impractical owing to relatively low disease incidence; protection is therefore estimated using serum bactericidal antibody (SBA) assays. Original experiments on natural immunity established a titer of ≥4 as the correlate of protection for SBA assays using human complement (hSBA), but human complement is relatively difficult to obtain and standardize. Use of baby rabbit complement (rSBA assays), per standard guidelines for serogroups A and C, generally results in comparatively higher titers. Postlicensure effectiveness data for serogroup C conjugate vaccines support acceptance of rSBA titers ≥8 as the correlate of protection for this serogroup, but no thresholds have been formally established for serogroups A, W, and Y. Studies evaluating MenACWY-TT (Nimenrix®; Pfizer Inc, Sandwich, UK) immunogenicity have used both hSBA and rSBA assays, and ultimately suggest that rSBA may be more appropriate for these measurements.


Assuntos
Proteínas do Sistema Complemento/análise , Proteínas do Sistema Complemento/imunologia , Vacinas Meningocócicas/imunologia , Ensaios de Anticorpos Bactericidas Séricos/normas , Animais , Anticorpos Antibacterianos/sangue , Humanos , Infecções Meningocócicas/diagnóstico , Infecções Meningocócicas/prevenção & controle , Coelhos/imunologia , Sorogrupo , Ensaios de Anticorpos Bactericidas Séricos/métodos , Fatores de Tempo , Vacinas Conjugadas/imunologia
15.
Methods Mol Biol ; 1969: 169-179, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30877677

RESUMO

Serum bactericidal antibody (SBA) assays measure functional antibody titers against Neisseria meningitidis in sera. Induction of complement-dependent SBA after vaccination with meningococcal polysaccharide or conjugate or protein based vaccines is regarded as the surrogate of protection and thus acceptable evidence of the potential efficacy of these vaccines. This chapter discusses and details SBA assay protocols for measuring the complement-mediated lysis of serogroup A, B, C, W, X, and Y meningococci by human sera, for example, following vaccination or disease.


Assuntos
Anticorpos Antibacterianos/imunologia , Proteínas do Sistema Complemento/imunologia , Infecções Meningocócicas/imunologia , Neisseria meningitidis/imunologia , Sorogrupo , Ensaios de Anticorpos Bactericidas Séricos/métodos , Humanos , Infecções Meningocócicas/microbiologia , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/administração & dosagem , Neisseria meningitidis/classificação , Vacinação
16.
Equine Vet J ; 51(5): 669-673, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30648279

RESUMO

BACKGROUND: Current serological tests cannot discriminate between bactericidal Borrelia burgdorferi antibodies from others that are merely a response to Borrelia antigenic stimulation. OBJECTIVE: To develop a sensitive and convenient luminescence-based serum bactericidal assay (L-SBA) to identify serum borreliacidal activity. STUDY DESIGN: Prospective validation study and method comparison. METHODS: Serum samples were obtained either from archives of the Animal Health Diagnostic Center at Cornell University (N = 7) or from a vaccination trial (N = 238). Endogenous complement-inactivated serum sample was incubated with exogenic complement and B. burgdorferi ML23 pBBE22luc, which is able to process luciferin with luciferase and produce luminescence in viable Borrelia. After incubation, a light signal can be detected by using a luminometer to calculate the borreliacidal antibody titre. RESULTS: Components of the reaction mixture including spirochetes and complement from various sources and concentrations were tested to identify a reliable recipe for our complement-mediated L-SBA. We also applied this L-SBA on measuring bactericidal antibody activities and calculated the half inhibitory concentration (IC50 ) of serum samples from clinical collections. Furthermore, we analysed the L-SBA titres and anti-outer surface protein A (OspA) antibody levels from vaccinated horses using the multiplex assays and found that there is a relationship between results generated using these two different assays. The increases of L-SBA titres correlated with increases of anti-OspA antibody titre in sera (r = 0.423). MAIN LIMITATIONS: Immunoreactivity of commercial complement may differ from different batches. Clinical protection of borreliacidal antibody levels has not been determined. CONCLUSIONS: The L-SBA provided a sensitive and easy-operating platform for the evaluation of bactericidal antibody to B. burgdorferi, and we anticipated L-SBA would function well as an evaluation tool of vaccine efficiency in the future.


Assuntos
Anticorpos Antibacterianos/sangue , Borrelia burgdorferi/imunologia , Doenças dos Cavalos/prevenção & controle , Medições Luminescentes/veterinária , Vacinas contra Doença de Lyme/imunologia , Ensaios de Anticorpos Bactericidas Séricos/veterinária , Animais , Doenças dos Cavalos/sangue , Cavalos , Medições Luminescentes/métodos , Ensaios de Anticorpos Bactericidas Séricos/métodos
17.
Vaccine ; 37(9): 1209-1218, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30691980

RESUMO

BACKGROUND: Data on duration of protection against invasive meningococcal disease post-vaccination with the recombinant, 4-component, meningococcal serogroup B vaccine (4CMenB) are limited. We evaluated bactericidal activity persistence in adolescents/young adults up to 7.5 years post-primary vaccination with 4CMenB, and response to a booster dose compared with vaccine-naïve controls. METHODS: This open-label, multicenter study (NCT02446743) enrolled 15-24 year-old-previously vaccinated participants from Canada, Australia (group Primed_4y) 4 years post-priming with 4CMenB (2 doses; 0,1-month schedule), and Chile (Primed_7.5y) 7.5 years after priming with 4CMenB (2 doses; 0,1/0,2/0,6-month schedule) and vaccine-naïve participants of similar age (Naïve_4y and Naïve_7.5y groups). Primed participants received a booster dose; vaccine-naïve participants received 2 catch-up doses of 4CMenB, 1 month apart. We evaluated antibody persistence and immune responses using hSBA in terms of geometric mean titers and percentages of participants with hSBA titers ≥4, the kinetics of bactericidal activity post-booster (previously vaccinated) or post-2 doses (vaccine-naïve), and safety. RESULTS: Antibody levels declined at 4 (Primed_4y) and 7.5 (Primed_7.5y) years post-primary vaccination, but remained higher than in vaccine-naïve participants at baseline (≤44% vs ≤ 13% [fHbp]; ≤84% vs ≤ 24% [NadA]; ≤29% vs ≤ 14% [PorA]) for all vaccine antigens except NHBA (≤81% vs ≤ 79%). One month post-booster and post-second dose, 93-100% of primed and 79-100% of vaccine-naïve participants had hSBA titers ≥4 for all antigens. Kinetics of the antibody response were similar across groups with an early robust response observed 7 days post-booster/second dose. No vaccine-related serious adverse event was reported. CONCLUSION: For all antigens except NHBA, a higher proportion of primed participants had hSBA titers ≥4, at 4 and 7.5 years post-vaccination, compared with vaccine-naïve participants. A more robust immune response after booster compared to a first dose in vaccine-naïve individuals, showed effective priming in an adolescent/young adult population. No safety or new reactogenicity issues were identified.


Assuntos
Anticorpos Antibacterianos/sangue , Imunização Secundária , Imunogenicidade da Vacina , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/imunologia , Adolescente , Anticorpos Bloqueadores/sangue , Austrália , Canadá , Chile , Feminino , Seguimentos , Humanos , Esquemas de Imunização , Cinética , Masculino , Vacinas Meningocócicas/administração & dosagem , Vacinas Meningocócicas/efeitos adversos , Neisseria meningitidis Sorogrupo B , Ensaios de Anticorpos Bactericidas Séricos , Fatores de Tempo , Adulto Jovem
18.
Hum Vaccin Immunother ; 15(3): 725-731, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30352000

RESUMO

The 4-component vaccine 4CMenB, developed against invasive disease caused by meningococcal serogroup B, is approved for use in infants in several countries worldwide. 4CMenB is mostly used as 3 + 1 schedule, except for the UK, where a 2 + 1 schedule is used, and where the vaccine showed an effectiveness of 82.9%. Here we compared the coverage of two 4CMenB vaccination schedules (3 + 1 [2.5, 3.5, 5, 11 months] versus 2 + 1 [3.5, 5, 11 months of age]) against 40 serogroup B strains, representative of epidemiologically-relevant isolates circulating in England and Wales in 2007-2008, using sera from a previous phase 3b clinical trial. The strains were tested using hSBA on pooled sera of infants, collected at one month post-primary and booster vaccination. 4CMenB coverage was defined as the percentage of strains with positive killing (hSBA titres ≥ 4 after immunisation and negative baseline hSBA titres < 2). Coverage of 4CMenB was 40.0% (95% confidence interval [CI]: 24.9-56.7) and 87.5% (95%CI: 73.2-95.8) at one month post-primary and booster vaccination, respectively, regardless of immunisation schedule. Using a more conservative threshold (post-immunisation hSBA titres ≥ 8; baseline ≤ 2), at one month post-booster dose, strain coverages were 80% (3 + 1) and 70% (2 + 1). We used a linear regression model to assess correlation between post-immunisation hSBA data for each strain in the two groups; Pearson's correlation coefficients were 0.93 and 0.99 at one month post-primary and booster vaccination. Overall, there is no evidence for a difference in strain coverage when 4CMenB is administered according to a 3 + 1 or 2 + 1 infant vaccination schedule.


Assuntos
Anticorpos Antibacterianos/sangue , Esquemas de Imunização , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/administração & dosagem , Neisseria meningitidis Sorogrupo B/imunologia , Sorogrupo , Ensaios Clínicos Fase III como Assunto , Humanos , Imunização Secundária , Lactente , Infecções Meningocócicas/imunologia , Vacinas Meningocócicas/imunologia , Ensaios de Anticorpos Bactericidas Séricos
19.
Sao Paulo Med J ; 136(5): 442-448, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30570095

RESUMO

BACKGROUND: Serological tests are practical, with low cost, but no noninvasive tests are available for diagnosing Helicobacter pylori (H. pylori) infection in Brazil. The aim here was to develop and validate enzyme-linked immunosorbent assay (ELISA) serological tests to detect anti-H. pylori immunoglobulin G antibodies, based on cultured strains from Brazilian patients. DESIGN AND SETTING: Cross-sectional, diagnostic accuracy study comparing a locally developed and validated ELISA and invasive tests among dyspeptic patients at two public hospitals in São Paulo, Brazil. METHODS: An ELISA test was prepared using whole-cell antigen from 56 strains. After genotypic characterization, it was standardized and optical density (OD) cutoffs were determined based on the serum antibody response of 100 H. pylori-negative samples, compared with 82 H. pylori-positive samples. Validation was performed on 174 symptomatic patients. RESULTS: The optimal OD cutoffs established (for monoclonal and polyclonal tests, respectively) were 0.167 and 0.164; overall ELISA sensitivity: 84.3%, 78.9%; specificity: 88.6%, 90.6%; positive predictive value (PPV): 75.4%, 80%; negative predictive value (NPV): 93.1%, 81.8%; accuracy: 87.3%, 86.2%; child and adolescent ELISA sensitivity: 74.2%, 81.8%; specificity: 90.8%, 86.7%; PPV: 66.6%, 84.3%; NPV: 95.8%, 84.8%; accuracy: 88.5%, 84.6; adult ELISA sensitivity: 84.4%, 75%; specificity: 86.9%, 93%; PPV: 81.8%, 78.3%; NPV: 88.9%, 91.8%; accuracy: 85.9%, 88.5%. CONCLUSION: The polyclonal serological test developed using local strains presented better diagnostic performance among children and adolescents, while the monoclonal test was better among adults. The results from both tests suggest that these in-house serological tests could be used to detect anti-H. pylori antibodies in our population, for screening purposes.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Infecções por Helicobacter/diagnóstico , Helicobacter pylori/isolamento & purificação , Ensaios de Anticorpos Bactericidas Séricos/normas , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antibacterianos/sangue , Criança , Pré-Escolar , Estudos Transversais , Ensaio de Imunoadsorção Enzimática/normas , Feminino , Infecções por Helicobacter/microbiologia , Helicobacter pylori/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estômago/microbiologia , Estômago/patologia , Adulto Jovem
20.
mSphere ; 3(5)2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305317

RESUMO

Neisseria gonorrhoeae (gonococcus [Ng]) is the causative organism of the sexually transmitted disease gonorrhoea, and no effective vaccine exists currently. In this study, the structure, biological properties, and vaccine potential of the Ng-adhesin complex protein (Ng-ACP) are presented. The crystal structure of recombinant Ng-ACP (rNg-ACP) protein was solved at 1.65 Å. Diversity and conservation of Ng-ACP were examined in different Neisseria species and gonococcal isolates (https://pubmlst.org/neisseria/ database) in silico, and protein expression among 50 gonococcal strains in the Centers for Disease Control and Prevention/Food and Drug Administration (CDCP/FDA) AR Isolate Bank was examined by Western blotting. Murine antisera were raised to allele 10 (strain P9-17)-encoded rNg-ACP protein with different adjuvants and examined by enzyme-linked immunosorbent assay (ELISA), Western blotting, and a human serum bactericidal assay. Rabbit antiserum to rNg-ACP was tested for its ability to prevent Ng-ACP from inhibiting human lysozyme activity in vitro. Ng-ACP is structurally homologous to Neisseria meningitidis ACP and MliC/PliC lysozyme inhibitors. Gonococci expressed predominantly allele 10- and allele 6-encoded Ng-ACP (81% and 15% of isolates, respectively). Murine antisera were bactericidal (titers of 64 to 512, P < 0.05) for the homologous P9-17 strain and heterologous (allele 6) FA1090 strain. Rabbit anti-rNg-ACP serum prevented Ng-ACP from inhibiting human lysozyme with ∼100% efficiency. Ng-ACP protein was expressed by all 50 gonococcal isolates examined with minor differences in the relative levels of expression. rNg-ACP is a potential vaccine candidate that induces antibodies that (i) are bactericidal and (ii) prevent the gonococcus from inhibiting the lytic activity of an innate defense molecule.IMPORTANCENeisseria gonorrhoeae (gonococcus [Ng]) is the causative organism of the sexually transmitted disease gonorrhoea, and the organism is listed by the World Health Organization as a high-priority pathogen for research and development of new control measures, including vaccines. In this study, we demonstrated that the N. gonorrhoeae adhesin complex protein (Ng-ACP) was conserved and expressed by 50 gonococcal strains and that recombinant proteins induced antibodies in mice that killed the bacteria in vitro We determined the structure of Ng-ACP by X-ray crystallography and investigated structural conservation with Neisseria meningitidis ACP and MliC/PliC proteins from other bacteria which act as inhibitors of the human innate defense molecule lysozyme. These findings are important and suggest that Ng-ACP could provide a potential dual target for tackling gonococcal infections.


Assuntos
Adesinas Bacterianas/química , Anticorpos Antibacterianos/sangue , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/imunologia , Animais , Western Blotting , Gonorreia/microbiologia , Gonorreia/prevenção & controle , Humanos , Soros Imunes/imunologia , Vacinas Meningocócicas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Proteínas Recombinantes/química , Ensaios de Anticorpos Bactericidas Séricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...